Eigenvalues and eigenfunctions of the Laplacian via inverse iteration with shift

نویسندگان

  • Rodney Josué Biezuner
  • Grey Ercole
  • Breno Loureiro Giacchini
  • Eder Marinho Martins
چکیده

In this paper we present an iterative method, inspired by the inverse iteration with shift technique of finite linear algebra, designed to find the eigenvalues and eigenfunctions of the Laplacian with homogeneous Dirichlet boundary condition for arbitrary bounded domains X R . This method, which has a direct functional analysis approach, does not approximate the eigenvalues of the Laplacian as those of a finite linear operator. It is based on the uniform convergence away from nodal surfaces and can produce a simple and fast algorithm for computing the eigenvalues with minimal computational requirements, instead of using the ubiquitous Rayleigh quotient of finite linear algebra. Also, an alternative expression for the Rayleigh quotient in the associated infinite dimensional Sobolev space which avoids the integration of gradients is introduced and shown to be more efficient. The method can also be used in order to produce the spectral decomposition of any given function u 2 LðXÞ. 2012 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs

Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...

متن کامل

Inverse nodal problem for p-Laplacian with two potential functions

In this study, inverse nodal problem is solved for the p-Laplacian operator with two potential functions. We present some asymptotic formulas which have been proved in [17,18] for the eigenvalues, nodal points and nodal lengths, provided that a potential function is unknown. Then, using the nodal points we reconstruct the potential function and its derivatives. We also introduce a solution of i...

متن کامل

On the determination of asymptotic formula of the nodal points for the Sturm-Liouville equation with one turning point

In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated. Furthermore, we obtain the zeros of eigenfunctions.

متن کامل

The numerical values of the nodal points for the Sturm-Liouville equation with one turning point

An inverse nodal problem has first been studied for the Sturm-Liouville equation with one turning point. The asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated and an asymptotic of the nodal points is obtained. For this problem, we give a reconstruction formula for the potential function. Furthermore, numerical examples have been established a...

متن کامل

Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions

In this paper, we study the inverse problem for Dirac differential operators with  discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 219  شماره 

صفحات  -

تاریخ انتشار 2012